
Computations in Riemannian Geometry and Geometric

Analysis

Steven Buchanan

These notes are intended as a practical reference when doing basic calculations in Riemannian
geometry. I hope they will be helpful to the reader who is familiar with the concepts of Riemannian
geometry but isn’t an expert when it comes to calculations; they may provide a useful supplement to
a more expository text on Riemannian geometry (I recommend, in addition to the standard texts, the
lecture notes of Ben Andrews, which can be found online, and the book by Andrews and Hopper).

Proofs are placed at the end of each section, and are numbered based on the right-hand side
numbering. The numbers on the right hand side are all mostly links that go back and forth between
an equation and its proof (actually this doesn’t work at the moment). Because this is intended more
as a reference than as something to be read from start to finish, I’ve only made a little effort to keep
concepts in order of dependence.

This is a slow but steady work in progress, with still much to be done, possibly including some
major reorganization. Last updated: December 2, 2024

TODO: a section on Hodge theory. References: HRF 1.5
TODO: finish all TODOs
TODO: read Jost Ch. 2-3 and probably also the rest of the book
TODO: fix all links and make sure every equation has a proof

0 Notation and Conventions

I believe my sign convention for the curvature of a connection agrees with Chow, meaning that it
is the opposite of Andrews. (Lee?) My convention for the factor in front of the wedge product of
alternating tensors agrees with Andrews (and Lee?) and opposes Chow.

Throughout, unless otherwise stated, we will be considering a Riemannian n-manifold M =
(Mn, g).

Γ(E) the set of sections of the bundle E over M

T k` (M) the set of (k, `)-tensors; that is, sections of (T ∗M)⊗k ⊗ (TM)⊗`

∧kT ∗M the k-form bundle on M

Ωk(T ∗M) the set of sections of ∧kT ∗M , i.e. the set of k-forms on M ; Γ(∧kT ∗M)

dVol the volume form of a Riemannian manifold
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1 Basic notions

This section contains constructions that don’t depend on a Riemannian metric, but also contains
some Riemannian-metric based identities.

1.1 Vector fields

By construction (see any book on Riemannian geometry), a vector field X ∈ Γ(TM) satisfies the
Leibniz rule

X(fg) = fX(g) + gX(f)

for f, g ∈ C∞(M). From this it follows that

X(fY ) = X(f) · Y + fX(Y ). (1)

If f ∈ C∞(M) and r : R→ R,
X(r ◦ f) = (r′ ◦ f)X(f) (2)

1.2 Differential forms

Given a vector space V , a (k, 0)-tensor ω ∈
⊗k

V ∗ is said to be alternating if it is antisymmetric
under interchange of any two of its arguments. The set of alternating (k, 0)-tensors on V is denoted
∧kV ∗. In particular, we are interested in ∧kT ∗pM ; the space of alternating (k, 0)-tensors at p. Two
special cases are 0- and 1-tensors, which are functions and covectors respectively. These are trivially
alternating, so we have ∧0T ∗M = C∞(M) and ∧1T ∗M = T ∗M .

The wedge product of an alternating k-tensor and an alternating `-tensor is a (k + `)-tensor,
defined by

S ∧ T =
1

k!`!

∑
σ∈Sk+`

sgn(σ)(S ⊗ T ) ◦ σ,

where the composition with σ denotes applying the permutation σ to the k + ` inputs to S ⊗ T .
There is another convention (used by Chow for example) for this that involves a different factor in
front. The wedge product satisfies the following properties, for forms ω, η, µ and c ∈ C∞(M),:

(i) ω ∧ (η ∧ µ) = (ω ∧ η) ∧ µ

(ii) (cω) ∧ η = ω ∧ (cη) = c(ω ∧ η)

(iii) If ω, η ∈ ∧kTpM , then
(ω + η) ∧ µ = ω ∧ µ+ η ∧ µ.

(iv) If ω ∈ ∧kTpM and η ∈ ∧`TpM , then

η ∧ ω = (−1)k`ω ∧ η.

The space ∧kTpM is in fact a vector space: given a basis {ωi}ni=1 for T ∗pM , the set{
ωi1 ∧ · · · ∧ ωik : 0 < i1 < · · · < ik < n

}
is a basis for ∧kTpM . Thus ∧kTpM has dimension

(
n
k

)
. Moreover, the set {∧kTpM : p ∈M} of all

alternating k-tensors at points of M has a bundle structure. A k-form is a smooth section of the
bundle ∧kT ∗M . The set of all k-forms on M is denoted Ωk(M).
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1.2.1 The volume form

If M is oriented, there is a unique n-form dµ = dµg called the volume form, defined in local
coordinates by

dµ =
√

det(gij)dx
1 ∧ · · · ∧ dxn.

If {ωi}ni=1 is an oriented orthonormal coframe for T ∗M , then

dµ = ω1 ∧ · · · ∧ ωn. (3)

Despite the notation, the volume form dµ is generally not the exterior derivative of some (n−1)-form
µ.

1.2.2 Exterior derivative

The exterior derivative is the unique linear operator d : Ωk(M)→ Ωk+1(M) satisfying

(i) If f ∈ Ω0(M) = C∞(M), then df is the same as the differential of f .

(ii) If ω ∈ Ωk(M) and η ∈ Ω`(M), then

d(ω ∧ η) = (dω) ∧ η + (−1)kω ∧ dη.

(iii) d2 = 0.

Using these axioms, we can determine the following expression for d. Suppose we have coordinate
covector fields dxi. If we have the k-form ω given by (??? sums are taken over increasing k-tuples)

ω =
∑

i1,...,ik

ωi1...ikdx
i1 ∧ · · · ∧ dxik ,

then (I think this sum is just taken over all tuples).

dω =
∑

i,i1,...,ik

∂ωi1···ik
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxik . (4)

Strictly speaking, there is still some more work to be done to make sure everything works here, even
though it seems like we have a nice expression for d. One needs to show that this doesn’t depend on
the coordinates, and justify the claim that this operator is unique. For arguments of these facts, see
Ben Andrews’s lecture notes on differential geometry, or one of many other books on geometry.

If ω is a 1-form, we have the following useful expression

dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]). (5)

test 1
The previous expression generalizes: if ω is a k-form, the exterior derivative satisfies (here the

hat notation means we are removing an argument)

(dω)(X0, . . . , Xk) =

k∑
j=0

(−1)jXjω(X0, . . . , X̂j , . . . , Xk)

+
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

(6)

4



According to some conventions for the wedge product, this expression may differ by a factor of
1
k+1 (e.g. in [2]). This expression can also be used to define the exterior derivative in a way that is
explicitly independent of coordinates.

1.2.3 Interior product

The interior product is, for each X ∈ TpM , a linear map ιX : ∧k T ∗pM → ∧k−1T ∗pM . If ω ∈ ∧0T ∗pM
(so that ω is a number), we define ιXω = 0. Otherwise, the interior product is the unique linear
operator ιX : Ωk(M)→ Ωk−1(M) satisfying similar properties to the exterior derivative:

(i) When ω ∈ Ω1(M) = Γ(T ∗M), then ιXω = ω(X).

(ii) If ω ∈ Ωk(M) and η ∈ Ω`(M), then

ιX(ω ∧ η) = (ιXω) ∧ η + (−1)kω ∧ (ιXη)

(iii) ι2X = 0.

From (ii) it follows that

ιX(ω1 ∧ · · · ∧ ωk) =

k∑
i=1

(−1)i+1ω1 ∧ · · · ∧ ιX(ωi) ∧ · · · ∧ ωk.

We can determine that ιX has the following expression:

ιX(ω)(X1, . . . , Xk−1) = ω(X,X1, . . . , Xk−1). (7)

In particular, for covectors ω1, . . . , ωk, we have

ιX(ω1 ∧ · · · ∧ ωk) =

k∑
i=1

(−1)i−1ωi(X)ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωk(X). (8)

Differential forms are exactly the objects that we integrate over a manifold. For more about
integration, see Section 6.1.

1.2.4 The Hodge star operator

Before defining this operator, we need to define an inner product of forms. We could construct
k-forms as alternating tensors on any vector space. Then an inner product on the vector space
induces an inner product on the k-forms. We define this on basis k-forms by (taking {ωi}ki=1 as a
basis for the vector space)〈

ωi1 ∧ · · ·ωik , ωji ∧ · · · ∧ ωjk
〉

= det(
〈
ωia , ωjb

〉
).

In our case, the inner product is of course the Riemannian metric, so the product becomes (asssuming
that {ωi} is orthonormal) 〈

ωi1 ∧ · · ·ωik , ωji ∧ · · · ∧ ωjk
〉

= det(δiajb).

The Hodge star operator ∗ : ∧kT ∗M → ∧n−kT ∗M is then defined by

〈ω, η〉 dVol = ω ∧ ∗η.
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For example, if {ωi}ni=1 is a positively oriented coframe, then

∗ (ω1 ∧ · · · ∧ ωk) = ωk+1 ∧ · · · ∧ ωn. (9)

As an operator on ∧kT ∗M ,
∗2 = (−1)k(n−k). (10)

∗2 = (−1)k(n−k). (10)

Proof. TODO

1.3 The differential and gradient

The differential df of a function f ∈ C∞(M) is the 1-form defined by

(df)(X) = X(f)

forX ∈X (M). Let grad f denote the vector field dual to df . That is, g(grad f,X) = (df)(X) = X(f).
Sometimes ∇f is used to denote either df or grad f (or both). It is also used to denote the total
covariant derivative of f (see below), but this is not really an abuse of notation since the total
covariant derivative of f is equal to df .

grad(fh) = f gradh+ h grad f (11)

In coordinates:
df = (∂if)dxi (12)

grad f = gij(∂jf)∂i (13)

1.4 Divergence

Note that for a vector field X, d(ιX(dµ)) is an n-form, so it is fdµ for some smooth function f . We
call this function the divergence of X, so that

d(ιX dµ) = divX dµ.

We could also have defined the divergence as the trace of the covariant derivative:

divX = tr∇X = (∇X)(∂i, dx
i) = (∇iX)(dxi). (14)

In local coordinates, we have the expression

div(Xi∂i) =
1√

det g
∂i(X

i
√

det g). (15)

The product of a function f and a vector field X satisfies

div(fX) = X(f) + f divX. (16)
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The characterization of divergence as the trace of the covariant derivative allows us to define the
divergence of a (k, `)-tensor as the (k, `− 1)-tensor

(div T )(X1, . . . , X`−1) = tr(∇T ())

A useful operator in Hodge theory is δ, the formal adjoint to d on one-forms. In particular, for a
function f and a form ω, if we define δ(ω) = − div(ω]), we have

〈δω, f〉 = 〈ω, df〉 , (17)

where 〈δω, f〉 =
∫
M

(δω)f dµ, and 〈ω, df〉 =
∫
M
g(ω, df) dµ.

1.5 The Laplacian(s)

The simplest version of the Laplacian is defined for functions f ∈ C∞(M) by

∆f = div grad f.

This can be extended to act on tensor bundles. This operator is called the connection Laplacian,
the rough Laplacian, or the Laplace-Beltrami operator; there are other second order linear
elliptic operators referred to as the Laplacian as well. We define the rough Laplacian on tensors by
∆: Γ(T k` (M))→ Γ(T k` (M)) by

∆T = div∇T = trg∇2T = gij∇i∇jT,

where the trace is taken over the two new indices introduced by ∇2. For functions, this has the
coordinate expression

∆f =
1√

det g

∂

∂xi

(√
det ggij

∂f

∂xj

)
. (18)

∆(fh) = f∆h+ h∆f + 2 〈grad f, gradh〉 (19)

From this it follows that the heat operator ∂t −∆ satisfies the product rule

(∂t −∆)(fh) = f(∂t −∆)(h) + h(∂t −∆)(f)− 2 〈∇f,∇h〉 . (20)

If f ∈ C∞(M) and r : R→ R, then

∆(r ◦ f) = (r′ ◦ f)∆f + (r′′ ◦ f) |∇f |2 (21)

There is also the Lichnerowicz Laplacian, see [1] Appendix A.4, and the Laplacian on forms.

1.6 Computations in special coordinates

Proofs of various identities can be simplified by choosing particular coordinate systems at a point.
The idea is that essentially all quantities we are interested in are independent of coordinates, so we
only need to prove an identity involving such quantities in a particular coordinate system, and it will
hold in general. Thus we are free to choose the simplest coordinate system for the problem.

Most often the simplest coordinate system is normal coordinates, in which the metric becomes
the identity matrix. We define these coordinates by taking an orthonormal basis {ei} for TpM ,
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and letting exp−1
p : U → Bε(0) be the chart map, where U 3 p and ε are chosen to make this a

diffeomorphism. In normal coordinates at p, we have the following: TODO: TAGS

gij(p) = δij , (1)

Γkij(p) = 0, (2)

∂kgij(p) = 0. (3)

It follows from the local integrability of vector fields that, given a vector field X = Xi∂i, we can
choose coordinates so that Xi = 0 for i > 1.

TODO: more details on this, and other types of useful coordinates; harmonic, geodesic, others?

1.7 Cartan’s moving frames

See also some exposition in Volume 2 of Spivak and in Chow’s Lectures on Differential Geometry.
We use generalized Einstein notation frequently throughout this section. Let {ei}ni=1 be a local

orthonormal frame field on an open subset of M . Let {ωi}ni=1 be the dual orthonormal basis for
T ∗M , defined by ωi(ej) = δij . We define the connection 1-forms ωi,j (corresponding to {ei}) to
be the components of the Levi-Civita connection with respect to {ei}. That is,

∇Xei = ωi,j(X)ej .

Equivalently, we could define
ωi,j = g(∇ekei, ej)ωk, (25)

or
ωi,j(X) = g(∇Xei, ej). (26)

These are antisymmetric in i and j,
ωi,j = −ωj,i, (27)

and satisfy the first Cartan structure equation:

dωi = ωj ∧ ωj,i = ωi,j ∧ ωj . (28)

We also have
dωj(ei, ej) = ωi,j(ej)− ωj,k(ei). (29)

From this it follows that

ωi,k(ej) =
1

2

(
dωi(ej , ek) + dωj(ei, ek)− dωk(ej , ei)

)
. (30)

Now we define the curvature 2-forms Ωi,j by

Ωi,j(X,Y )ej =
1

2
Rm(X,Y )ei.

These measure the noncommutativity of taking two covariant derivatives. We could also define these
by (TODO: check the constant?)

Ωi,j =
1

2
Rmijk` ωk ∧ ω`, (31)
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so that
Ωi,j(ek, e`) = Rmijk` . (32)

These satisfy the following, called the second Cartan structure equation:

Ωi,j = dωi,j − ωi,k ∧ ωk,j (33)

This gives us a way to compute curvatures. For example, on a surface M2, we have

dω1 = ω2 ∧ ω2,1, dω2 = ω1 ∧ ω1,2, Ω1,2 = dω1,2

1.8 Proofs

X(fY ) = X(f) · Y + fX(Y ). (1)

Proof. For g ∈ C∞(M),

[X(fY )](g) = X(f · Y (g))

= X(f) · Y (g) + fX(Y (g))

= [X(f) · Y + fX(Y )](g).

X(r ◦ f) = (r′ ◦ f)X(f) (2)

Proof. This follows from the chain rule on Rn. First consider the case where X = ∂i. Let ψ be a
chart about p ∈M .

∂i|p(r ◦ f) :=
∂

∂xi

∣∣∣∣
ψ(p)

(r ◦ f ◦ ψ−1)

= r′(f(p)) · ∂

∂xi

∣∣∣∣
ψ(p)

(f ◦ ψ−1)

∂xi

= r′(f(p))∂if.

Then the general case follows by linearity.

dµ = ω1 ∧ · · · ∧ ωn (3)

Proof. Nothing to prove here.

dω =
∑

i,i1,...,ik

∂ωi1···ik
∂xi

dxi ∧ dxi1 ∧ · · · ∧ dxik (4)

Proof. We use first the linearity of d and next its product rule.

dω = d

 ∑
i1,...,ik

ωi1···ikdx
i1 ∧ · · · ∧ dxik


=

∑
i1,...,ik

d(ωi1···ikdx
i1 ∧ · · · ∧ dxik)

=
∑

i1,...,ik

dωi1···ik ∧ dxi1 ∧ · · · ∧ dxik + (−1)kωi1···ikd(dxi1 ∧ · · · ∧ dxik).
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But now since d2 = 0, the second term is 0, and by the expression (12) for the differential, the result
follows.

dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]). (5)

Proof. By definition,

(dxi ∧ dxj)(X,Y ) =

(∑
σ∈S2

sgn(σ)(dxi ⊗ dxj) ◦ σ

)
(X,Y ) = XiY j −XjY i

the left hand side is

dω(X,Y ) =

∑
i,j≤n

∂iωjdx
i ∧ dxj

 (X,Y )

=
∑
i,j

∂iωj(X
iY j −XjY i)

On the other hand, note that

Xω(Y ) = Xi∂i(ωjdx
j(Y k∂k))

= Xi∂i(ωjY
j)

= XiY j∂i(ωj) +Xiωj∂i(Y
j),

and

ω([X,Y ]) = ω(Xi∂i(Y
j∂j)− Y k∂k(X`∂`))

= ω(Xi∂i(Y
j)∂j − Y k∂k(X`)∂`)

= Xiωj∂i(Y
j)− Y kω`∂k(X`).

so the right hand side becomes

Xω(Y )− Y ω(X)− ω([X,Y ]) = XiY j∂i(ωj) +Xiωj∂i(Y
j)− Y kX`∂k(ω`)−Xkω`∂k(Y `)

−Xpωq∂p(Y
q) + Y tωs∂t(X

s)

= XiY j∂i(ωj)− Y kX`∂k(ω`).

(dω)(X0, . . . , Xk) =

k∑
j=0

(−1)jXjω(X0, . . . , X̂j , . . . , Xk) (6)

+
∑

0≤i<j≤k

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk).

Proof. TODO

ιX(ω)(X1, . . . , Xk−1) = ω(X,X1, . . . , Xk−1) (7)
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Proof. In coordinates,

ιX(ω)(X1, . . . , Xk−1) = ιX(ωi1...ikdx
i1 ∧ · · · ∧ dxik)(X1, . . . , Xk−1)

=

TODO

ιX(ω1 ∧ · · · ∧ ωk) =

k∑
i=1

(−1)i−1ωi(X)ω1 ∧ · · · ∧ ω̂i ∧ · · · ∧ ωk(X). (8)

Proof. Note that by property (ii) defining the interior product,

ιX(ω1 ∧ · · · ∧ ωk) = ιX(ω1) ∧ ω2 ∧ · · · ∧ ωk + (−1)ω1 ∧ ιX(ω2 ∧ · · · ∧ ωk),

and the result follows by induction (and by property (i), which says ιX(ω) = ω(X) for 1-forms ω).

∗(ω1 ∧ · · · ∧ ωk) = ωk+1 ∧ · · · ∧ ωn. (9)

Proof. In this case we have〈
ω1 ∧ · · · ∧ ωk, ω1 ∧ · · · ∧ ωk

〉
dVol = dVol

= (ω1 ∧ · · · ∧ ωk) ∧ (ωk+1 ∧ · · · ∧ ωn),

which establishes the result.

grad(fh) = f gradh+ h grad f (11)

Proof. Recall that grad f is defined to be the vector field so that for all vector fields X,

〈grad f,X〉 = X(f).

Now

〈grad(fh), X〉 = X(fh)

= fX(h) + hX(f)

= f 〈gradh,X〉+ h 〈grad f,X〉
= 〈f gradh+ h grad f,X〉 .

df = (∂if)dxi (12)

Proof. This follows immediately, since

df(∂i) = ∂i(f).

grad f = gij(∂jf)∂i (13)

11



Proof. Recall that for any vector field X,

X = dxi(X)∂i = Xi∂i.

So, writing in coordinates

g(grad f,X) = df(X)

gijdx
i(grad f)Xj = (∂kf)dxk(X)

gijdx
i(grad f)Xj = (∂kf)Xk

gijdx
i(grad f) = (∂jf)

dxi(grad f) = gij(∂jf)

grad f = gij(∂jf)∂i.

divX = tr∇X = (∇X)(∂i, dx
i) = (∇iX)(dxi). (14)

Proof. TODO

div(Xi∂i) =
1√

det g
∂i(X

i
√

det g). (15)

Proof. Apply Cartan’s formula (38) and the definition of the divergence as the quantity satisfying
d(ιXdµ) = divX dµ.

TODO: idk what this is supposed to prove but it’s not right

div(fX) = X(f) + f divX (16)

Proof. One can prove this using coordinates, but there is a nicer way.

div(fX) = tr(∇fX)

= tr( · (f)X + f∇·X)

= tr( · (f)X) + f tr(∇·X)

= (∂i(f)X)(dxi) + f divX

= dxi(∂i(f)Xk∂k) + f divX

= ∂i(f)Xi + f divX

= X(f) + f divX.

〈δω, f〉 = 〈ω, df〉 . (17)

Proof. First observe that from (16), we get

−δ(fω) = ω](f)− fδω.

12



Using the definition of divergence of ω] as the quantity satisfying d(ιω]dµ) = divω]dµ = −δωdµ, we
have

〈f, δω〉 =

∫
M

fδω dµ

=

∫
M

(δ(fω) + ω](f)) dµ

=

∫
M

δ(fω) dµ+

∫
M

ω](f) dµ

=

∫
M

ω](f) dµ

=

∫
M

g(df, ω)

= 〈df, ω〉 .

∆f =
1√

det g

∂

∂xi

(√
det ggij

∂f

∂xj

)
. (18)

Proof. This follows immediately from the coordinate expression for the divergence and grad f .

∆(fh) = f∆h+ h∆f + 2 〈∇f,∇h〉 (19)

Proof.

∆(fh) = div grad(fh)

= div(f gradh+ h grad f)

= div(f gradh) + div(h grad f)

= (gradh)(f) + f div(gradh) + (f ↔ h)

= 〈gradh, grad f〉+ f∆h+ (f ↔ h)

= f∆h+ h∆f + 2 〈grad f, gradh〉 .

∆(r ◦ f) = (r′ ◦ f)∆f + (r′′ ◦ f) |∇f |2 (21)

Proof. By definition, and using (2) to evaluate terms like ∂i(r ◦ f),

∆(r ◦ f) = gij∇2
ij(r ◦ f)

= gij(∇i(∇j(r ◦ f))−∇∇i∂j (r ◦ f))

= gij(∂i∂j(r ◦ f)− Γkij∂k(r ◦ f))

= gij(∂i((r
′ ◦ f)∂jf)− Γkij(r

′ ◦ f)∂kf)

= gij((r′′ ◦ f)∂if∂jf + (r′ ◦ f)∂i∂jf − (r′ ◦ f)Γkij∂kf)

= gij(r′′ ◦ f)∂if∂jf + (r′ ◦ f)∆f

= (r′′ ◦ f) |∇f |2 + (r′ ◦ f)∆f.

(∂t −∆)(fh) = f(∂t −∆)(h) + h(∂t −∆)(f)− 2 〈∇f,∇h〉 . (20)

Proof. TODO
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gij(p) = δij (22)

Proof. Recall that d(expp)0 = Id.

∂

∂xi
= d(expp)0

(
∂

∂ei

∣∣∣∣
0

)
=

∂

∂ei
,

from which (22) follows.

Γkij(p) = 0 (23)

Proof. This follows immediately from (22) and the definition of Γ.

∂kgij(p) = 0 (24)

Proof. We have

∂kgij = ∂kg(∂i, ∂j)

= g(∂k∂i, ∂j) + g(∂i, ∂k∂j).

Since ∂i are coordinate vector fields, ∂i∂j = 0, so the proof is done.

ωi,j = g(∇ekei, ej)ωk (25)

Proof. The first definition tells us that ∇∂kei = (ωi,j)kej , and so

g(∇∂k , ei, e`) = (ωi,`)k.

But this is equivalent to the second definition.

ωi,j(X) = g(∇Xei, ej). (26)

Proof. TODO

ωi,j = −ωj,i (27)

Proof.
ωi,j = Γjki = −Γikj = −ωj,i.

dωi = ωi,j ∧ ωj (28)

Proof. Recall the identity (5):

dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]).

Applying this with ω = ωi, X = ek, and Y = e`, we get

dω(ek, e`) = ek(ωi(e`))− e`(ωi(ek))− ωi([ek, e`])
= ek(δi`)− e`(δik)− ωi(∇eke` −∇e`ek)

= −ωi(Γjk`ej − Γj`kej)

= −Γik` + Γi`k

= Γ`ki − Γk`i,
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where in the last line we used 45 On the other hand, the right hand side becomes

(ωi,j ∧ ωj)(ek, e`) = ωi,j(ek)ωj(e`)− ωi,j(e`)ωj(ek)

= g(∇ekei, ej)δ
j
` − g(∇e`ei, ej)δ

j
k

= g(∇ekei, e`)− g(∇e`ei, ek)

= Γ`ki − Γk`i.

dωj(ei, ej) = ωi,j(ej)− ωj,k(ei). (29)

Proof. First observe that since ∇ekei = ωi,j(ek)ej , we have that ω`(∇ekei) = ωi,`(ek). Using this
fact and the definition of the exterior derivative,

dωk(ei, ej) = eiω
k(ej)− ejωk(ei)− ωk([ei, ej ])

= −ωk(∇eiej −∇ejei)
= −ωj,k(ei) + ωi,k(ej).

ωi,k(ej) =
1

2

(
dωi(ej , ek) + dωj(ei, ek)− dωk(ej , ei)

)
. (30)

Proof. Write out each term of the right hand side using (29), and use antisymmetry to cancel/combine
terms.

Ωi,j = −1

2
Rmijk` ωk ∧ ω` (31)

Proof. TODO

Ωi,j(ek, e`) = Rmijk` . (32)

Proof. Simply note that, since Rmijk` = −Rmij`k, we have

Ωi,j(ek, e`) =
1

2
(Rmijpq ωp ∧ ωq)(ek, e`)

=
1

2
Rmijpq(δpkδq` − δp`δqk)

=
1

2
Rmijk`−

1

2
Rmij`k

= Rmijk` .

Ωi,j = dωi,j − ωi,k ∧ ωk,j (33)

Proof. We give two proofs, respectively using the different definitions of Ωi,j . If we know that
Ωi,j = − 1

2 Rmijk` ωk ∧ ω`, we proceed as follows. From (25), we have that ωi,j(ek) = g(∇ekei, ej).
By taking the exterior derivative of both sides (thinking of the right hand side as the covector
X 7→ g(∇Xei, ej)), and using (5), we have

dωi,j(ek, e`) = ekω
i,j(e`)− e`ωi,j(ek)− ωi,j([e`, ek])

= dg(∇ei, ej)(ek, e`)
= ekg(∇e`ei, ej)− e`g(∇ekei, ej)− g(∇[e`,ek]ei, ej)

= g(∇ek∇e`ei, ej) + g(∇e`ei,∇ekej)− g(∇e`∇ekei, ej)
− g(∇ekei,∇e`ej)− g(∇[e`,ek]ei, ej).
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Observing that ωi,p(e`)ω
j,p(ek) = g(∇e`ei, ep)g(∇ekej , ep) = g(∇e`ei,∇ekej), we continue

= g(∇ek∇e`ei −∇e`∇ekei −∇[e`,ek]ei, ej) + ωi,p(e`)ω
j,p(ek)− ωi,p(ek)ωj,p(e`)

= Rmk`ij +(ωi,p ∧ ωj,p)(e`, ek)

= Rmijk` +(ωi,p ∧ ωp,j)(ek, e`)
= (Ωi,j + ωi,p ∧ ωp,j)(ek, e`)

TODO: the other version

2 Tensors

2.1 The induced metric on tensor bundles

Suppose we have a metric g on some bundle π : E →M . That is, we have a section of E∗ ⊗E∗ such
that at each point p ∈M , gp is an inner product on the fiber Ep. Then the metric on E defines a
bundle isomorphism ιg : E → E∗ by

ιg(ξ) : η 7→ gp(ξ, η), ξ, η ∈ Ep.

Moreover, there is a unique metric g on E∗ such that ιg is a bundle isometry:

g(ιg(ξ), ιg(η)) = g(ξ, η), ξ, η ∈ Ep.

So we see that a metric extends to tensor duals. It also extends to tensor products. Given bundles
E1, E2 with metrics g1, g2,

g = g1 ⊗ g2 ∈ Γ((E∗1 ⊗ E∗1 )⊗ (E∗2 ⊗ E∗2 )) ≡ Γ((E1 ⊗ E2)∗ ⊗ (E1 ⊗ E2)∗)

is the unique metric such that

g(ξ1 ⊗ η1, ξ2 ⊗ η2) = g1(ξ1, ξ2)g2(η1, η2).

The induced metric on a tensor product of dual bundles agrees with the induced metric on a dual
bundle of a tensor product. So, starting with a metric on the tangent bundle TM , we get metrics
(all denoted g) on all the tensor bundles T k` . We can write this in coordinates in the following way.
For S, T ∈ T k` (M), we have (at a point p),

g(S, T ) = ga1b1ga2b2 · · · gakbkgi1j1 · · · gi`j`Si1...i`a1...ak
T j1...j`b1...bk

.

2.2 Type changing with the metric

An (k, 0)-tensor is called covariant, and a (0, `)-tensor is called contravariant. For example, forms
are covariant, and vectors are contravariant. The terminology relates to how the components change
under a change of basis. If we scale some basis vectors by a factor of C, then the components of a
vector with respect to that basis scale by a factor of C−1; hence contravariant.

An (s, t)-tensor T is a section of (TM)⊗t ⊗ (T ∗M)⊗s. That is, it is a product of t vectors and
s covectors, meaning that it takes t covectors and s vectors as input, so it has s lower (covariant,
I think) indices, and t upper (contravariant, I think) indices. To add to the confusion, recall that
we can think of a (1, 1)-tensor either as an object that takes a vector and a covector and returns a
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scalar, or as an object that takes a vector and returns a vector. This generalizes; a (k, `)-tensor can
also be thought of as an object that takes k vectors and returns (a tensor product of) ` vectors.

For any |k| ≤ min{s, t}, we can make T into a (s−k, t+k)-tensor by using the natural isomorphism
(provided by the Riemannian metric) between TM and T ∗M given by v 7→ g(v, ·) ∈ T ∗M . So in the
tensor product above, we can replace TM ’s by T ∗M ’s arbitrarily, and thereby get any sort of tensor
we want with rank s+ t.

In coordinates, we can write (given a frame Ei and the coframe ξi),

T i1···itj1...js Ei1 ⊗ · · · ⊗ Eit ⊗ ξ
j1 ⊗ · · · ⊗ ξjs .

TODO: check/fix the s and t’s in the section.
Then to make T a (s+ 1, t− 1)-tensor, replace some Eik by gikjξ

j to get

T
i1···ik−1 ik+1···is

j j1···jtEi1 ⊗ · · · ⊗ ξj ⊗ · · · ⊗ Eis ⊗ ξj1 ⊗ · · · ⊗ ξjt ,

where
T
i1···ik−1 ik+1···is

j j1···jt := gikjT
i1···is

j1...jt

TODO: I think the s and t are wrong here

2.3 Contractions and traces

TODO: this section needs help; see Andrews-Hopper p. 22 and Lee p. 395.
Given a (k, `)-tensor T , where k, ` ≥ 1, we can form various (k − 1, `− 1)-tensors by tracing T ;

that is, by evaluating one of the covector factors of T at one of the vector factors. Specifically, there
are k` different traces we can take, since we can evaluate any of the covector fields at any of the
vector fields. In the case where T is a (1, 1)-tensor,

tr(T ) = tr(T ij Ei ⊗ ξj) = T ij ξ
j(Ei) = T ij δ

j
i = T ii .

More generally, if T is a (k, `)-tensor, and we evaluate the ath factor of T at the bth factor of T , we
have, for vector fields X1, . . . , X`−1, and covector fields ω1, . . . , ωk−1,

(trab T )(ω1, . . . , ωk−1, X1, . . . , X`−1)

= tr[(ω,X) 7→ T (ω1, . . . , ωa−1, ω, ωa+1, . . . , ωk−1, X1, . . . , Xb−k−1, X,Xb−k+1, . . . , X`+1)]

where on the right hand side we are now just taking the trace over a (1, 1) tensor again. In coordinates,
this is just

trab T = T i1···k···ikj1···k···j` ∂i1 · · · ∂ia−1
∂ia+1

· · · ∂ikdxj1 · · · dxjb−k−1dxjb−k+1 · · · dxj` .

Using the isomorphism induced by g between TM and T ∗M (see the previous section), we can
TODO

3 Lie Derivatives

Let X,Y be vector fields, and let ΨX,t be the flow of X, so that ΨX,t(x) is the point that x is “flowed
to” by X after time t. Then DΨX,t|x is an isomorphism between TxM and TΨX,t(x)M . (Note that
in this case the pullback is the inverse of the differential, so it does not matter if we use the pullback
or the inverse of the pushforward.) Now the point is that (DΨX,t|x)−1(YΨX,t(x)) is an element of
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TxM for each t, so we can differentiate this at t = 0. With these remarks in mind, we define the Lie
derivative of Y along the flow of X by

LXY |x =
d

dt

∣∣∣
t=0

(
(DΨX,t|x)−1(YΨX,t(x))

)
.

There are many different notations for the quantities in this equation. It is usually written more
concisely as

LXY |x =
d

dt

∣∣∣
t=0

(Ψ∗tY ).

Define the Lie bracket of vector fields by

[X,Y ](f) := X(Y (f))− Y (X(f)),

then
LXY = [X,Y ] = ∇XY −∇YX. (34)

For vector fields V,X1, . . . , Xk, and a tensor field A in T k0 (M),

(LVA(X1, . . . , Xk)) = (LVA)(X1, . . . , Xk) +

k∑
i=1

A(X1, . . . ,LVXi, . . . , Xk), (35)

where TODO: TAGS

(LVA)(X1, . . . , Xk) = V (A(X1, . . . , Xk))−
k∑
i=1

A(X1, . . . , [V,Xi], . . . , Xk) (37)

= (∇VA)(X1, . . . , Xk) +

k∑
i=1

A(X1, . . . , Xi−1,∇XiV,Xi+1, . . . , Xk) (37)

Cartan’s formula states that for any differential form ω and any (smooth) vector field V ,

LV ω = ιV (dω) + d(ιV ω). (38)

We have the following product rule for a Lie derivative of a wedge product

LV (α ∧ β) = (LV α) ∧ β + α ∧ (LV β). (39)

There is also the following identity for the interior product. For a differential form ω and vector
fields V,W ,

LW (ιV ω) = ιV (LWω) + ι[W,V ]ω. (40)

3.1 Proofs

LXY = [X,Y ] = ∇XY −∇YX. (34)
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Proof. Consider the action of LXY on a smooth function f . Note that by the chain rule and the
fact that IdTxM = Ψ−X,t ◦ΨX,t

DΨ−X,t|ΨX,t(x) ◦DΨX,t|x = IdTxM ,

so (DΨX,t|x)−1 = DΨ−X,t|ΨX,t(x). By definition of the derivative,

(DΨ−X,t|x(Y ))f = Y |ΨX,t(x)(f ◦Ψ−X,t).

Then

LXY |x(f) =
d

dt

(
(DΨX,t|x)−1(YΨX,t(x))

) ∣∣
t=0

=
d

dt

(
Y |ΨX,t(x)(f ◦Ψ−X,t)

)
TODO

(LVA(X1, . . . , Xk)) = (LVA)(X1, . . . , Xk) +

k∑
i=1

A(X1, . . . ,LVXi, . . . , Xk) (35)

Proof. TODO

(LVA)(X1, . . . , Xk) = V (A(X1, . . . , Xk))−
k∑
i=1

A(X1, . . . , [V,Xi], . . . , Xk) (36)

Proof. TODO

(LVA)(X1, . . . , Xk) = (∇VA)(X1, . . . , Xk)−
k∑
i=1

A(X1, . . . ,∇Xi
V, . . . ,Xk) (37)

Proof. TODO

LV ω = ιV (dω) + d(ιV ω). (38)

Proof. The proof is by direct computation. We can simplify by choosing coordinates for which
TODO

LV (α ∧ β) = (LV α) ∧ β + α ∧ (LV β). (39)

Proof. TODO

LW (ιV ω) = ιV (LWω) + ι[W,V ]ω. (40)

Proof. TODO
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4 Levi-Civita connection

TODO: this section should be rewritten; the stuff about covariant derivatives applies to more general
connections on vector bundles over a manifold. See 2.5 of Andrews-Hopper.

Let E be a vector bundle over M . The Levi-Civita connection for a given Riemannian metric g is
a map ∇ : Γ(TM)× Γ(E)→ Γ(E) (written as (X, ξ) 7→ ∇Xξ) that satisfies the following properties.
Note that the first three are defining properties of a general connection, and the last two properties
make ∇ the Levi-Civita connection with respect to g. For X,Y ∈ Γ(TM), f ∈ C∞(M), r ∈ R, and
ξ ∈ Γ(E),

(1) C∞ linearity in X:
∇X+fY ξ = ∇Xξ + f∇Y ξ.

(2) R-linearity in ξ:
∇X(rξ) = r∇Xξ.

(3) A product/Leibniz rule in ξ:

∇X(fξ) = X(f) · ξ + f∇Xξ.

(4) Metric compatibility:
X(g(ξ, η)) = g(∇Xξ, η) + g(ξ,∇Xη),

which can also be stated as
∇g = 0,

where the left hand side (and the right hand side) is a tensor field in T 3
0 (M). The proof that

these conditions are equivalent follows from the definition of ∇g below.

(5) Torsion-free (also known as symmetry):

∇XY −∇YX = [X,Y ]

It satisfies Koszul’s formula:

2 〈∇XY, Z〉 = X 〈Y,Z〉 − Z 〈X,Y 〉+ Y 〈Z,X〉 − 〈[Y,Z], X〉+ 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 . (41)

The metric compatibility condition tells us that

∇(g(X,Y )) = g(∇X,Y ) + g(X,∇Y ), (42)

where we interpret the right hand side as the covector Z 7→ g(∇ZX,Y ) + g(X,∇ZY ).

4.1 Christoffel symbols

Given some coordinate basis {∂i}ni=1, the Christoffel symbols (of the Levi-Civita connection) are
the unique coefficients, (i.e. smooth functions) satisfying

∇∂i∂j = Γkij∂k.

It follows from this and the above properties that

∇XY = (X(Y k) +XiY jΓkij)∂k. (43)
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In particular,
∇iX = (∂iX

` +XjΓ`ij)∂`.

For the Levi-Civita connection, we can calculate these coefficients in coordinates by

Γkji = Γkij =
1

2
gk`(∂igj` + ∂jgi` − ∂`gij). (44)

The symbols also satisfy the antisymmetry relation

Γkij = −Γjik. (45)

Despite using the same notation, we cannot think of the Christoffel symbols as a (1, 2)-tensor.
However, given two metrics g, g̃ the difference of the coefficients of the two corresponding Levi-Civita
connections does form a tensor:

Γkij − Γ̃kij

4.2 Covariant derivatives

We can take directional derivatives of functions using only the differentiable structure of a manifold.
The covariant derivative is defined using the metric, and allows us to differentiate vector fields and
other tensors. If F ∈ T k` (M) is a tensor field, and X,Yk are vector fields and ωj are 1-forms, then

(∇XF )(ω1, . . . , ω`, Y1, . . . , Yk) = X(F (ω1, . . . , ω`, Y1, . . . , Yk))

−
∑̀
j=1

F (ω1, . . . ,∇Xωj , . . . , ω`, Y1, . . . , Yk)

−
k∑
i=1

F (ω1, . . . , ω`, Y1, . . . ,∇XYi, . . . , Yk).

We can think of ∇F as a (k + 1, `)-tensor field, called the total covariant derivative of F , by

(∇F )(ω1, . . . , ω`, Y1, . . . , Yk, X) = (∇XF )(ω1, . . . , ω`, Y1, . . . , Yk).

There are different conventions about where to put the X in this definition; I’m not sure if it matters.
An important property of covariant derivatives is that they “commute with contractions,” a property
that follows from the fact that ∇g ≡ 0. TODO

There is also a horrible expression for the covariant derivative in coordinates TODO
The following formula for commuting covariant derivatives at the expense of introducing a

Riemann curvature term is quite useful, although it’s probably better to just look at the more
common special cases below.

(∇i∇j −∇j∇i)α`1...`sk1...kr
= −

r∑
h=1

Rmp
ijkh

α`1...`sk1...kh−1pkh+1...kr
−

s∑
h=1

Rm`h
ijp α

`1...`h−1p`h+1...`s
k1...kr

(46)

For example, if ω is a 1-form,

(∇i∇j −∇j∇i)ωk = −Rm`
ijk ω`. (47)
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4.3 The Hessian

We can then take the total covariant derivative of F to get the Hessian of F , sometimes denoted
∇2F , which is of course a (k + 2, `)-tensor field.

It follows from the torsion-free property of the Levi-Civita connection that the Hessian is symmetric:

(∇2f)(X,Y ) = (∇2f)(Y,X). (48)

We have
∇2
X,Y F := (∇2F )(X,Y ) = ∇X(∇Y F )−∇∇XY F. (49)

The proof makes it more clear how the tensors on the right hand side actually work. In the case of a
function f , we have that (the first equality follows immediately from (49))

(∇2f)(X,Y ) = X(Y (f))− (∇XY )(f)

= g(∇X grad f, Y )

=
1

2
(Lgrad fg)(X,Y ).

(50)

In coordinates, we can write
∇i∇jf = ∂i(∂jf)− Γkij∂kf. (51)

In particular, since (∇2f)(X,Y ) = g(∇X grad f, Y ), the (1, 1)-tensor associated to ∇2 is given by
(∇2f)(X) = ∇X grad f . The Hessian satisfies the following product rule for functions.

∇2(fh) = f∇2h+ h∇2f +∇f ⊗∇h+∇h⊗∇f. (52)

4.3.1 Bochner Formulas

For any function u on a Riemannian manifold,

∆ |∇u|2 = 2 〈∆∇u,∇u〉+ 2
∣∣∇2u

∣∣2 . (53)

We also have the formula for the commutator of the Laplacian and the covariant derivative:

∆(du) = d(∆u) + Rc(∇u), (54)

sometimes also written as ∆∇u = ∇∆u+ Rc(∇u).

∆(du) = d(∆u) + Rc(∇u), (54)

Proof. By (47),
∇i∇j∇ku = ∇j∇i∇ku− Rmijk`∇`u.

Note that on the left-hand side we can commute ∇j and ∇k. From this equation,

gik∇i∇k∇ju = gik(∇j∇i∇ku+ Rmjik`∇`u)

∆∇ju = ∇j∆u+ Rcj`∇`u.
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4.4 Proofs

2 〈∇XY, Z〉 = X 〈Y,Z〉 − Z 〈X,Y 〉+ Y 〈Z,X〉 − 〈[Y,Z], X〉+ 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 . (41)

Proof. The metric compatibility condition says

X 〈Y, Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉
Y 〈Z,X〉 = 〈∇Y Z,X〉+ 〈Z,∇YX〉
Z 〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 .

By adding/subtracting these expressions, using symmetry and linearity of the metric, and the
torsion-free property (∇XY −∇YX = [X,Y ]), we obtain

X 〈Y, Z〉+ Y 〈Z,X〉 − Z 〈X,Y 〉 = 2 〈∇XY, Z〉 − 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉+ 〈X, [Y,Z]〉 .

∇(g(X,Y )) = g(∇X,Y ) + g(X,∇Y ). (42)

Proof. This really does follow immediately from the metric compatibility condition.

Γkji = Γkij =
1

2
gk`(∂igj` + ∂jgi` − ∂`gij) (44)

Proof. Apply the Koszul formula (41) to coordinate basis vectors:

2Γ`ijg`k = 2
〈
Γ`ij∂`, ∂k

〉
= 2 〈∇∂i∂j , ∂k〉
= ∂i 〈∂j , ∂k〉 − ∂k 〈∂i, ∂j〉+ ∂j 〈∂k, ∂i〉
= ∂igjk + ∂jgik − ∂kgij .

Now multiply both sides by gkm and the result follows.

Γkij = −Γjik (45)

Proof. The metric compatibility condition applied to the correct basis vectors says

0 = (∇g)(∂j , ∂k, ∂i)

= ∇∂ig(∂j , ∂k)

= g(∇iej , ek) + g(∇iek, ej)
= Γkij + Γjik.

(∇i∇j −∇j∇i)α`1...`sk1...kr
= −

r∑
`=1

Rmp
ijkh

α`1...`sk1...kh−1pkh+1...kr
−

s∑
h=1

Rm`h
ijp α

`1...`h−1p`h+1...`s
k1...kr

. (46)

Proof. TODO

(∇i∇j −∇j∇i)ωk = −Rm`
ijk ω`. (47)
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Proof. This follows immediately from (46), but I guess there should be a direct way to prove it as
well.

TODO

(∇2f)(X,Y ) = (∇2f)(Y,X). (48)

Proof. The torsion free property of the L-C connection says that

(∇XY )(f)− (∇YX)(f) = [X,Y ](f) := X(Y (f))− Y (X(f)),

and by rearranging this we get that

(X(Y (f))− (∇XY )(f) = Y (X(f))− (∇YX)(f),

which is exactly the desired equality.

∇2
X,Y F := (∇2F )(X,Y ) = ∇X(∇Y F )−∇∇XY F. (49)

Proof. According to the general definition of covariant derivative (and the definition of total covariant
derivative) above,

(∇(∇F ))(Y,X) = (∇X(∇F ))(Y )

= ∇X [(∇F )(Y )]−∇F (∇XY )

= ∇X(∇Y F )−∇∇XY F.

To make more explicit what is actually going on here, we can write, supposing F is a (k, `)-tensor,

∇2F (X,Y, ω1, . . . , ω`,W1, . . . ,Wk) = ∇X(∇F )(Y, ω1, . . . , ω`,W1, . . . ,Wk)

= X(∇F (Y, ω1, . . . , ω`,W1, . . . ,Wk))

− (∇F )(∇XY, ω1, . . . , ω`,W1, . . . ,Wk)

−
∑̀
i=1

(∇F )(Y, ω1, . . . ,∇Xωi, . . . , ω`,W1, . . . ,Wk)

−
k∑
i=1

(∇F )(Y, ω1, . . . , ω`,W1, . . . ,∇XWi, . . . ,Wk)

= ∇X(∇Y F )−∇∇XY F.

There is also a proof on page 99 of Lee-RM.

(∇2f)(X,Y ) = X(Y (f))− (∇XY )(f) = g(∇X grad f, Y ) =
1

2
(Lgrad fg)(X,Y ) (50)

Proof. The second equality:

X(Y (f))− (∇XY )(f) = X(g(grad f, Y ))− g(grad f,∇XY )

= g(∇X grad f, Y ) + g(grad f,∇XY )− g(grad f,∇XY )

= g(∇X grad f, Y ).
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The last equality: using (36) (TODO: check this reference; should it be 2a or 2b?) for the Lie
derivative of the metric, metric compatibility, (34), and denoting grad f by ∇f , we calculate

(L∇fg)(X,Y ) = (∇f)(g(X,Y ))− g([∇f,X], Y )− g(X, [∇f, Y ])

= g(∇∇fX,Y ) + g(X,∇∇fY )− g(∇∇fX −∇X(∇f), Y )− g(X,∇∇fY −∇Y (∇f))

= g(∇X(∇f), Y ) + g(X,∇Y (∇f))

= X(g(∇f, Y ))− g(∇f,∇XY ) + Y (g(X,∇f))− g(∇YX,∇f)

= (∇2f)(X,Y ) + (∇2f)(Y,X)

= 2(∇2f)(X,Y ).

∇i∇jf = ∂i(∂jf)− Γkij∂kf. (51)

Proof. Recalling that, by definition ∇i∂j = Γkij∂k,

∇i∇jf = ∇i(∇jf)−∇∇i∂jf

= ∂i∂jf −∇Γk
ij∂k

f

= ∂i∂jf − Γkij∇kf
= ∂i∂jf − Γkij∂kf

∇2(fh) = f∇2h+ h∇2f +∇f ⊗∇h+∇h⊗∇f (52)

Proof. First note that we are using ∇f to denote the gradient of f . Then

∇2(hf)(X,Y ) = ∇X(∇Y (fh))−∇∇XY (fh)

= ∇X(fY (h) + hY (f))− (∇XY )(fh)

= X(f)Y (h) + fX(Y (h)) +X(h)Y (f) + hX(Y (f))− h(∇XY )(f)− f(∇XY )(h)

= f(X(Y (h))− (∇XY )(h)) + h(X(Y (f))− (∇XY )(f))

+ (∇f ⊗∇h)(X,Y ) + (∇h⊗∇f)(X,Y )

= f(∇2h)(X,Y ) + h(∇2f)(X,Y ) + (∇f ⊗∇h)(X,Y ) + (∇h⊗∇f)(X,Y ).

∆ |∇u|2 = 2 〈∆∇u,∇u〉+ 2
∣∣∇2u

∣∣2 . (53)

Proof. The coordinate-free way to do this goes as follows. I use dots to keep track of the entries over
which the trace is taken.

∆ 〈∇u,∇u〉 = tr∇2 〈∇u,∇u〉
= tr(∇·(2 〈∇·∇u,∇u〉)
= 2 tr(〈∇·∇·∇u,∇u〉+ 〈∇·∇u,∇·∇u〉)

= 2 〈∆∇u,∇u〉+ 2
∣∣∇2u

∣∣2 ,
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as desired.
In normal coordinates, we can calculate

∆ |∇u|2 = ∆(∇iu∇iu)

= ∇j∇j(∇iu∇iu))

= 2∇j∇j∇iu∇iu+ 2∇j∇iu∇j∇iu

= 2 〈∆∇u,∇u〉+ 2
∣∣∇2u

∣∣2 .

5 Curvature

5.1 Curvature of a connection on a vector bundle

Reference: Andrews-Hopper Section 2.7.1. If ∇ is a connection on a vector bundle E over M , the
curvature of ∇ on E is the section R∇ ∈ Γ(T ∗M ⊗ T ∗M ⊗ E∗ ⊗ E) defined by

R∇(X,Y )ξ = ∇X(∇Y ξ)−∇Y (∇Xξ)−∇[X,Y ]ξ.

5.2 Riemann curvature

Riemann curvature is the special case of the previous construction where the connection is the
Levi-Civita connection on the tangent bundle over M . In particular, the (3, 1)-tensor (field) version
of the Riemann curvature tensor is a C∞(M)-multilinear map Γ(TM)×Γ(TM)×Γ(TM)→ Γ(TM)
defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= (∇2)(X,Y, Z)− (∇2)(Y,X,Z)

= ∇2
X,Y Z −∇2

Y,XZ.

In coordinates, we can write
R = R `

ijk dx
i ⊗ dxj ⊗ dxk ⊗ ∂`,

so that
R(X,Y )Z = R `

ijk X
iY jZk∂`.

where
R `
ijk ∂` = R(∂i, ∂j)∂k.

We can get a (4, 0)-tensor version of R by defining

Rijkl = R(∂i, ∂j , ∂k, ∂`) := 〈R(∂i, ∂j)∂k, ∂`〉 .

Then Rijk` = g`mR
m

ijk . This tensor satisfies the symmetries

Rijk` = −Rjik` = −Rij`k = Rk`ij (55)

and the 1st and 2nd Bianchi identities: TODO: TAGS

Rijk` +Rjki` +Rkij` = 0 (4)

∇iRjk`m +∇jRki`m +∇kRij`m = 0. (5)
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The once contracted 2nd Bianchi identity:

gim∇iRjk`m = ∇jRk` −∇kRj`. (58)

We can calculate the coefficients in terms of the Christoffel symbols as well:

R `
ijk = ∂iΓ

`
jk − ∂jΓ`ik + ΓmjkΓ`im − ΓmikΓ`jm (6)

Rijk` =
1

2
(∂j∂kgi` + ∂i∂`gjk − ∂i∂kgj` − ∂j∂`gik) + g`p(Γ

m
ikΓpjm − ΓmjkΓpim). (7)

In calculations, we frequently get Riemann curvature terms appearing from commuting covariant
derivatives, following from rearranging the formula that defines the Riemann tensor. See (46).

5.3 Ricci curvature

The Ricci tensor, denoted Rc or R, is defined to be the trace of the Riemann tensor:

Rc(Y, Z) := tr(X 7→ R(X,Y )Z),

or in coordinates
Rij = R k

kij = gkmRkijm.

The Ricci tensor satisfies the twice contracted second Bianchi identity:

2gij∇i Rcjk = ∇kR. (59)

The Ricci tensor can be expressed in terms of the metric:

− 2 Rcij = gk`(∂k∂`gij + ∂i∂jgk` − ∂i∂kgj` − ∂j∂kgi`) + lower order terms, (60)

where the lower order terms involve only one derivative of g. The Ricci tensor is invariant under
diffeomorphisms; that is, if φ is a diffeomorphism of M , then

Rcφ∗g = φ∗Rcg .

5.4 Scalar curvature

The scalar curvature is defined to be the trace (with respect to the metric) of the Ricci curvature:

R = trg Rc = Rc ii = gij Rcij .

Proofs

Rijk` = −Rjik` = −Rij`k = Rk`ij (55)

Proof. Using the fact that the Lie bracket is antisymmetric, it is clear from the definition that
R(X,Y )Z = −R(Y,X)Z, from which the equality Rijk` = −Rjik` follows. To show the second equal-
ity, we begin by showing that R(X,Y, Z, Z) = 0 for any Z. First note that by metric compatibility,

X(Y (|W |2)) = X(Y 〈W,W 〉)
= X(2 〈∇YW,W 〉)
= 2 〈∇X∇YW,W 〉+ 2 〈∇YW,∇XW 〉 .
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Similarly,
Y (X(|W |2)) = 2 〈∇Y∇XW,W 〉+ 2 〈∇XW,∇YW 〉 ,

and
[X,Y ] |W |2 = 2

〈
∇[X,Y ]W,W

〉
.

Now, subtracting the second and third of these two equations from the first and cancelling terms, we
have

0 = X(Y (|W |2))− Y (X(|W |2))− [X,Y ] |W |2

= 2 〈∇X∇YW,W 〉 − 2 〈∇Y∇XW,W 〉 − 2
〈
∇[X,Y ]W,W

〉
= 2 〈R(X,Y )W,W 〉
= R(X,Y,W,W ).

Applying this,

0 = 〈R(∂i, ∂j)∂k + ∂`, ∂k + ∂`〉
= Rijkk +Rijk` +Rij`k +Rij``

= Rijk` +Rij`k.

To prove the last equality, we use the first (algebraic) Bianchi identity.

Rijk` +Rjki` +Rkij` = 0 (56)

Proof. This will follow from

R(X,Y )Z +R(Z, Y )X +R(Y,X) = 0.

Expand using the definition of R, and then apply symmetry of the connection:

0 = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z+

+∇Z∇YX −∇Y∇ZX −∇[Z,Y ]X+

+∇Y∇XZ −∇X∇Y Z −∇[Y,X]Z

= ∇X(∇Y Z−

∇iRjk`m +∇jRki`m +∇kRij`m = 0. (57)

Proof. TODO

gim∇iRjk`m = ∇jRk` −∇kRj`. (58)

Proof.

∇iRjk`m = ∇jRik`m −∇kRij`m
gim∇iRjk`m = ∇jgimRik`m −∇kgimRij`m

= ∇jRk` −∇kRj`

28



2gij∇iRjk = ∇kR. (59)

Proof. Start with the 2nd Bianchi identity, contract twice, and apply some symmetries of the Riemann
tensor:

gimgj`(∇iRjk`m +∇jRki`m +∇kRij`m) = 0

gim∇igj`Rjk`m + gj`∇jgimRki`m + gim∇kgj`Rij`m = 0

−gim∇igj`Rjkm` − gj`∇jgimRik`m + gim∇kgj`Rjim` = 0

−gim∇iRkm − gj`∇jRk` +∇kgimRim = 0

−2gij∇iRjk +∇kR = 0.

−2Rij = gk`(∂k∂`gij + ∂i∂jgk` − ∂i∂kgj` − ∂j∂kgi`) + lower order terms, (60)

Proof. I don’t want to type this, but it just involves writing the Ricci tensor in terms of the Riemann
tensor, the Riemann tensor in terms of the Christoffel symbols, and the Christoffel symbols in terms
of the metric.

6 Geometric Analysis

6.1 Integration

6.1.1 Stokes’s theorem

Suppose M is an oriented n-manifold with boundary, and suppose ω is a compactly supported
(n− 1)-form on M . Then ∫

∂M

ω =

∫
M

dω. (61)

From this we can obtain several very useful special cases. The divergence theorem says that for
any smooth 1-form α on a compact manifold with boundary,∫

M

div(α) dµ =

∫
∂M

α(ν) dσ, (62)

where ν is the outward unit normal to the boundary, and dσ is the volume form of the boundary.
In the case of a vector field, we have∫

M

divX =

∫
∂M

g(X, ν) dσ. (63)
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6.1.2 Integration by parts

Suppose u, v ∈ C∞(M). If M is closed, ∫
M

∆u dµ = 0, (64)

If M is compact, ∫
M

(u∆v − v∆u) dµ =

∫
∂M

(
u
∂v

∂ν
− v ∂u

∂ν

)
dσ. (65)

Where ν and σ are the outward (?) unit normal and the volume form of ∂M .
In particular, on a closed manifold, the right hand side is 0, so

∫
u∆v =

∫
v∆u. If M is compact,

TODO: LABEL ∫
M

u∆v dµ+

∫
M

〈∇u,∇v〉 dµ =

∫
∂M

∂v

∂ν
u dσ. (66)

In particular, on a closed manifold,
∫
〈∇u,∇v〉 = −

∫
u∆v.

We also have ∫
M

g(grad f,X) dµ =

∫
∂M

fg(X, ν) dσ −
∫
M

f divX dµ.

6.2 Miscellaneous

If A(s) is a 1-parameter family of invertible square matrices, then

d

ds
log(detA) = (A−1)ij

d

ds
Aij . (67)

6.3 Variation formulae

References: Sheridan’s notes and Andrew-Hopper Chapter 4.
Suppose that g(t) is a time-dependent Riemannian metric, and

∂

∂t
gij(t) = hij(t).

Then we have the following evolution equations for various geometric objects (note in some cases the
result is only stated for the Ricci flow, i.e. when hij = −2 Rcij). Metric inverse:

∂

∂t
gij = −hij = −gikgjlhkl (68)

For time-independent vector fields, and an evolving metric g(t), we define ∇̇ = ∂t∇ by ∇̇XY =
∂t(∇XY ). Then 〈

∇̇XY, Z
〉

= −(∇X Rc)(Y, Z) + (∇Z Rc)(X,Y )− (∇Y Rc)(X,Z). (69)

If g(t) is a solution to Ricci flow, the function Laplacian ∆g(t) evolves by

∂t∆g(t) = 2 Rcij ∇i∇j . (70)
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Christoffel symbols:
∂

∂t
Γkij =

1

2
gk`(∇ihj` +∇jhi` −∇`hij) (71)

Riemann curvature tensor:

∂tR
`

ijk =
1

2
g`p (∇i∇jhkp +∇i∇khjp −∇i∇phjk −∇j∇ihkp −∇j∇khip +∇j∇phik) (72)

Ricci tensor
∂t Rcij = ∇p(∂tΓpij)−∇i(∂tΓ

p
pj). (73)

6.4 Proofs ∫
∂M

ω =

∫
M

dω. (61)

Proof. TODO; a bit involved. See Guillemin and Pollack p. 183.∫
M

div(α) dµ =

∫
∂M

α(ν) dσ, (62)

Proof. Some issues with orientability here? See Problem 2-22 p. 51 of Lee-RM. Recall that the
divergence of a vector field X is defined to satisfy d(ιX dµ) = divX dµ.

TODO ∫
M

divX =

∫
∂M

g(X, ν) dσ. (63)

Proof. The idea is to apply Stokes’s theorem (61) with α = ιX(dµ). With this definition,

dα = dιX(dµ) = divX dµ,

by definition of the divergence.

dα = dιX(dµ)

=

See HRF Theorem 1.47
TODO ∫

M

∆u dµ = 0, (64)

Proof. Recall that ∇u = div gradu. Then apply the divergence theorem (62) and the fact that M
has no boundary. ∫

M

(u∆v − v∆u) dµ =

∫
∂M

(
u
∂v

∂ν
− v ∂u

∂ν

)
dσ. (65)

Proof. Take X = u∇v − v∇u in the divergence theorem (for vector fields) (63).∫
M

u∆v dµ+

∫
M

〈∇u,∇v〉 dµ =

∫
∂M

∂v

∂ν
u dσ. (66)
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Proof. TODO

d

ds
log(detA) = (A−1)ij

d

ds
Aij . (67)

Proof. First, a lemma:

Lemma 6.1. det(I + tA) = 1 + tr(A)t+O(t2).

Proof. Recall that det(tA) = tn det(A). Also recall that the characteristic polynomial of A is the
product

(x− λ1) · · · (x− λn),

where λi’s are eigenvalues of A. In particular, the characteristic polynomial is also det(xI −A).

det(I + tA) = tn det(t−1I − (−A))

= tn(t−1 + λ1)(t−1 + λ2) · · · (t−1 + λn)

= tn

t−n + t−(n−1)
∑
i≤n

λi + t−(n−2)an−2 + · · ·+ t−1a1 + a0


= 1 + tr(A)t+O(t2).

Lemma 6.2. DA det(X) = det(A) tr(XA−1), where DA det is the differential of det : GLn(R)→ R
at A. In particular, the differential of det at the identity matrix is just the trace.

Proof. Note that det is a smooth function GLm(R)→ R (because the determinant is a polynomial
expression of the components of the matrix). First we consider the differential of det at I. By
definition and using the previous lemma,

DI det(X) = lim
h→0

det(I + hX)− det(I)

h

= lim
h→0

1 + tr(X)h+O(h2)− 1

h

= tr(X).

Now,

DA det(X) = lim
h→0

det(A+ hX)− det(A)

h

= det(A) lim
h→0

det(I + hXA−1)− det(I)

h

= det(A)DI(XA
−1)

= det(A) tr(XA−1).
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Note that A(s) defines a curve in GLm(R). We can think of d
ds det(A(s)) either as the derivative

of a function R→ R, or as the derivative of det : GLm(R)→ R in the direction of d
dsA(s). From the

second point of view we get

d

ds
det(A(s)) = DA det

(
d

ds
A(t)

)
= det(A) tr

(
A−1 d

ds
A(s)

)
,

finally proving (67).

∂

∂t
gij = −hij = −gikgjlhkl (68)

Proof.

0 = ∂tδ
i
k

= ∂t(g
ijgjk)

= (∂tg
ij)gjk + gij(∂tgjk)

(∂tg
ij)gjkg

k` = −gk`gij(∂tgjk)

(∂tg
ij)δ`j = −gk`gij(∂tgjk),

and the result follows.〈
∇̇XY,Z

〉
= −(∇X Rc)(Y,Z) + (∇Z Rc)(X,Y )− (∇Y Rc)(X,Z). (69)

Proof. TODO

∂t∆g(t) = 2 Rcij ∇i∇j . (70)

Proof. We give two proofs. For f ∈ C∞(M), using the coordinate expression (51) for the Hessian,

(∂t∆g(t))f := ∂t(g
ij∇i∇j)f

= (∂tg
ij)∇i∇jf + gij(∂t∇i∇jf)

= 2 Rcij ∇i∇jf + gij(∂t(∂i∂jf − Γkij∂kf))

= 2 Rcij ∇i∇jf + gij(∂tΓ
k
ij)∂kf

Now, we calculate, using the contracted second Bianchi identity 2gij∇i Rcjk = ∇kR.

gij∂tΓ
k
ij = gij

[
1

2
gk`(∇i(−2 Rcj`) +∇j(−2 Rci`)−∇`(−2 Rcij))

]
= −gj`gij∇i Rcj`−gk`gij∇j Rci` +gijgk`∇` Rcij

= −1

2
gk`∇`R−

1

2
gk`∇`R+ gk`∇`gij Rcij

= 0,

from which the result follows.
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Proof. The second proof is slightly less coordinate-dependent. Let f, h ∈ C∞(M). Then∫
M

h∆f dµ = −
∫
M

〈∇h,∇f〉 dµ

= −
∫
M

gij∇ih∇jf dµ.

Differentiating both sides with respect to t gives∫
M

[h∆̇f dµ+ h∆f(∂t dµ)] = −
∫
M

[(∂tg
ij)∇ih∇jf dµ+ gij∇ih∇jf(∂t dµ)].

Now use the fact that ∂tdµ = −Rdµ, and ∂tg
ij = 2Rij to get∫

M

[∆̇f −R∆f ]h dµ = −
∫
M

[2 Rcij ∇jf −Rgij∇jf ](∇ih) dµ

=

∫
M

∇i[2 Rcij ∇jf −Rgij∇jf ]h dµ.

Since h ∈ C∞(M) was arbitrary,

∆̇f −R∆f = ∇i(2 Rcij ∇jf −Rgij∇jf)

= (2∇i Rcij)∇jf + 2 Rcij ∇i∇jf − gij∇iR∇jf −Rgij∇i∇jf
= ∇jR∇jf + 2 Rcij ∇i∇jf −∇jR∇jf −R∆f

= 2 Rcij ∇i∇jf −R∆f,

and the result follows.

∂

∂t
Γkij =

1

2
gk`(∇ihj` +∇jhi` −∇`hij) (71)

Proof. By the coordinate expression (44) for the Christoffel symbols, we have

∂tΓ
k
ij =

1

2
(∂tg

k`)(∂igj` + ∂jgi` − ∂`gij) +
1

2
gk`(∂i∂tgj` + ∂j∂tgi` − ∂`∂tgij).

Now we work in normal coordinates at some point p, so ∂igij = 0, and ∂iA = ∇iA at p for any tensor
A.

TODO

∂tR
`

ijk =
1

2
g`p (∇i∇jhkp +∇i∇khjp −∇i∇phjk −∇j∇ihkp −∇j∇khip +∇j∇phik) (72)

Proof. TODO

∂t Rcij = ∇p(∂tΓpij)−∇i(∂tΓ
p
pj). (73)

Proof. hi TODO
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7 Submanifolds

Many of these ideas have are special cases of things discussed previously, in the case where the metric
is induced by some immersion or embedding into a higher dimensional Riemannian manifold.

As the notation for this section is quite painful, here is a seperate notation glossary just for
submanifolds, although it should essentially overlap with notation from the rest of the document. In
most cases I am following Mat Langford’s notation; see https://suppiluliuma.neocities.org/RG.pdf

Let Mn and Nn+k be smooth manifolds, and X : M → N a smooth immersion. Then we denote

dX : TM → TN the derivative of X

X∗TN the pullback bundle (over M)

dX(TM) the subbundle of X∗TN from the embedding (p, u) 7→ (p, dX(u))

of TM into X∗TN

〈·, ·〉 , g the metrics on N,M respectively

X∗ 〈·, ·〉 the pullback metric on X∗TN : X∗ 〈(p, u), (p, v)〉
NpM the normal space to M at p ∈M , i.e.

NpM = {ν ∈ TX(p)N : 〈u, ν〉 = 0 for all u ∈ dXp(TpM)}
NM the normal subbundle of TN in the case where X is an embedding

NM the normal subbundle of X∗TN (over M), i.e.

NM = {ν ∈ X∗TN : X 〈u, ν〉 = 0 for all u ∈ dX(TM)π(ν)}
D the connection on N

XD : TM × Γ(X∗TN)→ X∗TN the pullback connection on X∗TN , defined by
XDuX

∗V := (π(u), DdX(u)V )

∇ connection on TM

∇⊥ connection on NM

II second fundamental form; II ∈ Γ(T ∗M ⊗ T ∗M ⊗NM), i.e.

II(u, v) = (XDu(dX(V )))⊥, for an extension V of v

W Weingarten tensor; W ∈ Γ(T ∗M ⊗ TM ⊗N∗M)

7.1 Second fundamental form

Roughly, II(u, v) is the normal (to the image of the immersion) component of how the vector field V
is changing in the direction of u.

References

[1] Bennett Chow and Dan Knopf. The Ricci Flow: An Introduction. Vol. 1. American Mathematical
Soc., 2004.

[2] Bennett Chow, Peng Lu, and Lei Ni. Hamilton’s Ricci flow. Vol. 77. American Mathematical
Society, Science Press, 2023.

35

https://suppiluliuma.neocities.org/RG.pdf

	Notation and Conventions
	Basic notions
	Vector fields
	Differential forms
	The volume form
	Exterior derivative
	Interior product
	The Hodge star operator

	The differential and gradient
	Divergence
	The Laplacian(s)
	Computations in special coordinates
	Cartan's moving frames
	Proofs

	Tensors
	The induced metric on tensor bundles
	Type changing with the metric
	Contractions and traces

	Lie Derivatives
	Proofs

	Levi-Civita connection
	Christoffel symbols
	Covariant derivatives
	The Hessian
	Bochner Formulas

	Proofs

	Curvature
	Curvature of a connection on a vector bundle
	Riemann curvature
	Ricci curvature
	Scalar curvature
	Proofs

	Geometric Analysis
	Integration
	Stokes's theorem
	Integration by parts

	Miscellaneous
	Variation formulae
	Proofs

	Submanifolds
	Second fundamental form


